Non-Stationary Non-Equilibrium Rare Events

Kai Kratzer (*ICP Stuttgart*), Tanja Schilling (*Uni Luxembourg*), Axel Arnold (*ICP Stuttgart*) & Josh Berryman

UNIVERSITÉ DU LUXEMBOURG

PHYSICS AND MATERIAL SCIENCES RESEARCH UNIT

Some Definitions:

1) "Full" Equilibrium: detailed balance applies:

$$P(x)P(x \to y) = P(y)P(y \to x)$$
 Detailed Balance

2) Stationary (non-)equilibrium: balance only: $\Sigma_x P(x)P(x \to y) = P(y)\Sigma_x P(y \to x)$ Balance

3) Non-stationary non-equilibrium:

 $P(x,t) \neq P(x,t')$ No Balance

Directed Rare-Event Sampling:

How do I run a simulation such that I observe some rare event, but also such that I still know what the real, unbiased, distribution is?

Over-sample paths that seem to be going the right way, but record how much you have over-sampled by (FFS, TIS, SPRES, many others...). *"Splitting" methods?*

• No requirement for Boltzmann distribution.

FFS, TIS et al. *still* require/assume Poisson statistics (=>stationary dynamics), therefore we developed SPRES.
We may be interested in state distributions or in flux across some

hypersurface.... slightly different requirements.

`Directed' rare event simulation methods require:

Some stochastic microscopic dynamics

• A macroscopic coordinate λ (e.g. size of a cluster during nucleation, perhaps a fraction of native contacts during protein folding). The coordinate λ defines a subspace of the overall very high-dimensional space of the dynamics.

Before I introduce SPRES (2010).... I should note that it doesn't seem much different to: RESTART (1991?)

TIME

• Use an importance sampling to select the number of shots to run from each bin. R=`number forward'

$$n_i^{t+\tau} = n_i^t + \gamma \left(1 - \frac{R}{N}\right) n_i^t$$

• The softening, gamma, keeps it stable.

A couple of trivial variants of the algorithm:

- `Forward' can mean `out'.
- Forward can mean `decreased Hamming distance' (2+D case).

• We know how many shots from each bin... Which configs do we start the shots from?

$$w_s^t = rac{M_{i,j}^t d_i^t}{N_{i,j}}$$
 Weights of individual configs

• Pick the start config with probability proportional to its weight.... Recursion makes everything better.

• Selection of starting configs by relative weight is rather akin to pruned-enriched Rosenbluth sampling.

•After each round of selection, the weights of paths leaving a given bin are all the same, because high-weight configs had a bigger chance to be chosen, so they were `over-sampled', so their weights have decreased. And vice-versa.

$$d_j^t = \sum_{\{s^t\}} w_s^t \delta_j^t,$$

$$M_{i,j}^t = \sum_{\{s^t\}} w_s^t \delta_i^{t-\tau} \delta_j^t / d_i^{t-\tau}$$

Estimated bin weights and conditional transition probabilities for pairs of bins i,j (observe these directly from the simulation)

 $w_{s}^{t} = \frac{M_{i,j}^{t} d_{i}^{t}}{N_{i,j}}$ Weights of individual configs $\overline{x}^{t} = \sum_{i} w_{s}^{t} x(s^{t}).$ Ensemble averages of some observable x $\{S^t\}$

•Require *some* continuity on the reaction coordinate w.r.t. configurational space.

•Require a "warm-up" time to populate the bins before rare events are observed.

•Do not require 1D reaction coordinate.

•Prefer, but do not require, the dominant `least action' reaction paths to be monotonic on the reaction coordinate.

• Parameters are τ and the positions of the bin boundaries.

• more bins -> shorter τ .

S-PRES gives:

- Time-dependent dynamics
- •An even spread of states/paths over λ is sampled
- •A strictly unbiased estimate of the probability of each observed state or path is provided, conditioned only on the initial conditions and on the time.

Berryman & Schilling, J. Chem. Phys. 2010

Example : Rare fluctuations in a critical system.

•Asymmetric Exclusion Process – basically a "traffic" model.

•Start with an empty road.

•What is the probability of a total traffic jam versus time?

Example : Rare fluctuations in a critical system.

Example: Rare fluctuations in a critical system.

Density = On rate = α

Density = 1 - off rate = $1 - \alpha$

Example: Rare fluctuations in a critical system.

• Start in the morning with an empty road.

• What is the probability of a total traffic jam versus time (with fixed α)?

Berryman & Schilling, J. Chem. Phys. 2010

Nucleation under Fixed Shear Flow

Nucleation under Fixed Shear Flow

Nucleation under Variable Shear Flow

•Quickly approaches the stationary value

•Transients appear to fit an exponential, with same constant in both cases.

Berryman & Schilling, J. Chem. Phys. 2010

MACHINE 1

MACHINES 2...N

• "KFFS" by Koos van Meel et. al.,

• Done in C++ a few years ago.

•OO, but you need to compile-in your own simulation code.

	GROMACS	ell	espressoMD	networkX
SPRES		Is Fast	Is Fast	Is Fast
FFS		Works	Is Fast	Is Fast

- Open to people wishing to add new algorithms
- Open to people wishing to write wrappers for new simulation codes.
- Developer's guide on request.

Summary:

•New technique developed for simulating rare events, for example nucleation.

•This works away from steady states; it gives explicit time dependence.

•Tested against some extant steady-state numerical calculations (shear flow) and against theory (T quench & ASEP).

•Trivial parallelisation available; speedup is robust to parameter choice. Harness available.

Afterthought:

•Sometimes people invest effort in mapping a high-level Markov model onto the microscopic dynamics of their system

•SPRES gives you this for free. The matrix of bin-bin transition probabilities (can be) a very neat summary of the important pathways of the dynamics.

Thanks

- Tanja & rest of the Binder group (at the time)
 Rosalind Allen (inspiration)
 Kai Kratzer & Axel Arnold (FRESHS)
 Deutsche Forschungsgemeinschaft (funding)
 Université du Luxembourg (funding)
 Fonds Nationale de Recherche (funding)
- NGS UK & Uni Luxembourg HPC & ESMI (CPU)

